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Abstract

Insurance fraud represents a significant financial burden globally, with annual losses exceeding
$200 billion across healthcare, auto, and life insurance sectors. Traditional rule-based fraud
detection systems have proven inadequate against increasingly sophisticated fraudulent schemes,
prompting widespread adoption of deep learning (DL) approaches. This comprehensive review
systematically examines the application of DL techniques to insurance fraud detection, analyzing
57 peer-reviewed studies published between 2019 and 2025. We evaluate the effectiveness of
various architectures including Convolutional Neural Networks (CNNs), Long Short-Term
Memory networks (LSTMs), Graph Neural Networks (GNNs), and hybrid models across
healthcare, auto, and life insurance domains. Our analysis reveals that ensemble methods
combining CNNs with LSTMs achieve accuracies ranging from 89.6% to 98%, while GNN-based
approaches demonstrate superior performance in detecting collusive fraud networks with
accuracies exceeding 84%. The review identifies critical challenges including severe class
imbalance with fraud rates of 0.03-8%, model interpretability requirements, and limited
availability of labeled datasets. We examine emerging trends including explainable artificial
intelligence (XAI) frameworks, attention mechanisms, generative adversarial networks (GANs)
for synthetic data generation, and federated learning approaches for privacy-preserving fraud
detection. This review contributes to understanding the current state-of-the-art in DL for
insurance fraud detection while highlighting critical research gaps and future directions in model
interpretability, cross-domain transfer learning, and real-time detection systems.

Keywords: Auto insurance fraud, Convolutional neural networks, Deep learning, Explainable AI, Graph neural networks,
Healthcare fraud, Imbalanced datasets, Insurance fraud detection, LSTM.

1. Introduction

Insurance fraud constitutes one of the most pervasive financial crimes globally, imposing substantial economic
burdens on insurance companies, governments, and ultimately, honest policyholders through increased premiums.
Conservative estimates suggest that fraudulent insurance claims account for 3-10% of total healthcare expenditures
alone, translating to approximately $105 billion annually in the United States healthcare sector [17]. When
considering all insurance sectors including auto insurance at $45 billion, life insurance at $74.7 billion, and
property and casualty insurance, the total annual global losses attributable to insurance fraud exceed $200 billion
[27]. These staggering figures underscore the critical importance of developing effective fraud detection
mechanisms that can adapt to increasingly sophisticated fraudulent schemes. The Coalition Against Insurance
Fraud estimates that insurance fraud costs American consumers an additional $400 to $700 per year in increased
premiums, demonstrating how fraud impacts not just insurance companies but all policyholders [37.

Traditional approaches to insurance fraud detection have relied predominantly on rule-based systems and
manual auditing processes conducted by fraud investigators. These conventional methods utilize predetermined
heuristic rules and statistical thresholds to flag potentially fraudulent claims for human review [47]. While such
approaches have provided valuable early-stage fraud detection capabilities, they suffer from several fundamental
limitations that severely constrain their effectiveness in contemporary fraud detection scenarios. Rule-based
systems exhibit high false positive rates, often flagging legitimate claims while missing sophisticated fraudulent
schemes that fall outside predefined rule parameters [57]. Moreover, these systems require extensive domain
expertise for rule formulation and frequent manual updates to adapt to evolving fraud patterns, making them
resource-intensive and reactive rather than proactive [67]. The manual auditing process is particularly tedious and
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inefficient when confronted with the massive volumes of claims data generated by modern insurance systems,
where human experts must sift through numerous records to identity suspicious or fraudulent behaviors [77].

The rapid digitalization of insurance processes and the proliferation of electronic health records, telematics
data from vehicles, and digital transaction systems have generated unprecedented volumes of insurance-related
data [87]. This data explosion, combined with the increasing sophistication of fraudulent schemes involving
coordinated networks of perpetrators, has exposed the inadequacy of traditional detection methods. Fraudsters
have evolved to exploit the limitations of rule-based systems through adaptive strategies including camouflage
behavior, where fraudulent actors establish connections primarily with legitimate entities to avoid detection, and
temporal manipulation, concentrating fraudulent activities within short timeframes to minimize exposure [97.
These sophisticated fraud patterns are particularly challenging for traditional methods to detect, as they involve
complex relational dependencies and temporal dynamics that exceed the analytical capabilities of rule-based
systems [107].

Deep learning (DL) has emerged as a transformative paradigm for addressing these challenges, offering several
distinct advantages over traditional machine learning (ML) and rule-based approaches. Unlike conventional
methods that rely on manually engineered features and domain-specific expert knowledge, DL models can
automatically learn hierarchical representations and complex patterns directly from raw or minimally processed
data [117]. This capability is particularly valuable in insurance fraud detection, where fraudulent patterns often
involve subtle, nonlinear relationships across multiple variables that are difficult to capture through manual feature
engineering [127]. The automatic feature learning capacity of DL eliminates the time-consuming and expertise-
intensive process of feature engineering, allowing models to discover previously unknown fraud indicators from
data.

Recent advances in DL architectures have demonstrated remarkable success across diverse insurance fraud
detection applications. Convolutional Neural Networks (CNNs), originally developed for computer vision tasks,
have been successfully adapted to extract spatial patterns from structured insurance claims data by treating tabular
data as two-dimensional matrices where convolutional filters can identify local feature interactions [137]. Recurrent
Neural Networks (RNNs) and their advanced variants, Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) networks, have proven highly effective for modeling temporal dependencies in sequential transaction
data and identifying anomalous temporal patterns indicative of fraud [147]. These architectures maintain internal
memory states that enable them to capture long-term dependencies in sequential data, making them particularly
suitable for analyzing claim submission patterns, treatment histories, and transaction sequences. More recently,
Graph Neural Networks (GNNs) have emerged as a powerful tool for detecting fraud networks and collusive
behavior by explicitly modeling relational structures among policyholders, healthcare providers, and claims [157.
The ability of GNNs to process graph-structured data enables them to identify fraudulent patterns embedded in
the network topology that would be invisible to traditional methods analyzing claims in isolation [167].

The application of DL to insurance fraud detection has accelerated dramatically in recent years, reflecting both
technological advancements and growing institutional recognition of the value these methods provide. A
systematic analysis of publication trends reveals a steep increase from 2022 onwards, with particularly pronounced
growth between 2023 and 2024 [17]. This surge reflects multiple converging factors including advancements in
DL architectures specifically designed for handling imbalanced datasets and relational data structures, increasing
availability of large-scale insurance datasets for research purposes, growing regulatory pressure and financial
incentives for improved fraud detection capabilities, and demonstrated superiority of DL approaches over
traditional methods in rigorous empirical evaluations. Among DL techniques, LSTM networks have exhibited the
most sustained growth trajectory, with applications increasing sharply from 2022 to 2024 as shown in Figure 1
[17]. This trend is attributable to the inherently sequential nature of insurance fraud datasets, where temporal
patterns of claim submissions, payment histories, and service utilization sequences provide crucial signals for
distinguishing fraudulent from legitimate behavior [187. Multilayer Perceptrons (MLPs) and CNNs have
maintained steady application rates due to their versatility in learning complex feature interactions and their
computational efficiency for real-time deployment scenarios where rapid decision-making is essential [197.
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Figure 1. Yearly Trends of Deep Learning Algorithm Application in Fraud Detection (2019-2024)
Source: Chen et al. (2025) systematic review. The graph shows LSTM demonstrating the steepest growth trajectory, particularly from 2022-2024, reflecting
the sequential nature of fraud detection data.

Despite these advances, several critical challenges continue to impede the widespread adoption and
effectiveness of DL for insurance fraud detection. Chief among these is the severe class imbalance problem, where
fraudulent cases typically represent only 0.03-3% of total claims in real-world datasets [207. This extreme
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imbalance can cause DL models to exhibit bias toward the majority class, achieving high overall accuracy by simply
predicting all cases as legitimate while failing to detect actual fraud cases that represent the minority class of
primary interest [217]. Model interpretability represents another significant concern, as many high-performing DL
architectures operate as black boxes, providing predictions without transparent reasoning about which factors
drove particular decisions [227. This lack of transparency conflicts with regulatory requirements in many
jurisdictions that mandate explainable decision-making for actions affecting individuals, such as claim denials or
fraud investigations [237]. Furthermore, practitioners including fraud investigators and claims adjusters require
understandable explanations to validate model decisions, investigate flagged cases effectively, and maintain trust in
automated systems.

Data quality and availability constitute additional major obstacles to effective DL deployment in insurance
fraud detection. Many studies rely on private proprietary datasets that cannot be shared for research purposes due
to confidentiality agreements and competitive considerations, hindering reproducibility and comparative evaluation
of different approaches [247]. Publicly available datasets often suffer from inconsistent labeling where ground truth
fraud labels may be uncertain or incomplete, missing values across important variables, and limited coverage of
real-world fraud scenarios including emerging fraud types not represented in historical data [257. Furthermore,
privacy regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States
and the General Data Protection Regulation (GDPR) in Europe impose stringent constraints on the collection,
storage, and sharing of insurance-related personal data, creating legal and ethical barriers to data-intensive DL
research [267]. These regulations require extensive anonymization and de-identification procedures that may
remove information valuable for fraud detection while still maintaining sufficient detail for model training.

This comprehensive review aims to address these challenges and provide a systematic synthesis of the current
state-of-the-art in DL applications for insurance fraud detection. Through analysis of 57 peer-reviewed studies
spanning 2019 to 2025, we examine the evolution and comparative effectiveness of difterent DL architectures
across healthcare, auto, and life insurance fraud detection domains, techniques for addressing the class imbalance
problem including sampling methods and cost-sensitive learning, publicly available datasets and their
characteristics with discussion of their suitability for different research objectives, performance metrics and
evaluation methodologies appropriate for imbalanced fraud detection scenarios, emerging trends including
explainable Al frameworks and graph-based fraud network detection, and critical research gaps with promising
directions for future work that could advance both theoretical understanding and practical deployment of DL fraud
detection systems.

2. Literature Review

The application of computational methods to insurance fraud detection has evolved progressively from simple
statistical models to sophisticated DL architectures over the past two decades. Early fraud detection systems relied
primarily on statistical anomaly detection and rule-based expert systems that encoded domain knowledge from
fraud investigators into explicit decision rules [277]. These approaches provided interpretable decisions that could
be explained to stakeholders and audited for compliance, but suffered from limited adaptability to new fraud
patterns and high maintenance costs as fraud schemes evolved and rules required constant updating. The transition
from these traditional methods to ML-based approaches began in the early 2000s with the application of classical
algorithms including logistic regression, decision trees, and support vector machines to fraud detection tasks [287].
These ML methods demonstrated improved performance over rule-based systems by learning patterns from
labeled historical data rather than relying solely on predefined rules, yet they still required substantial manual
feature engineering to transform raw claim data into representations suitable for modeling.

The emergence of DL has fundamentally transformed the landscape of insurance fraud detection by enabling
end-to-end learning from raw data without extensive feature engineering. Recent systematic reviews have
documented a surge in DL applications for financial fraud detection broadly, with insurance fraud representing a
major application domain [177]. The review documented that traditional ML approaches remain dominant with 94
studies employing supervised methods, while DL techniques are experiencing rapid adoption with 41 studies using
unsupervised methods and 12 using hybrid approaches that combine multiple paradigms [297]. The distribution
across financial sectors shows credit card and banking fraud attracting the most research attention, though
insurance fraud detection represents a substantial and growing portion of the literature with particular focus on
healthcare and auto insurance domains.

Healthcare insurance fraud has received extensive research attention due to both the magnitude of financial
losses involved and the availability of large-scale public datasets from government healthcare programs. A
systematic literature review specifically examining fraud detection in healthcare claims using ML identified
important patterns in research approaches and methodologies [17]. Their analysis revealed that studies focused on
fraud detection by healthcare providers represent the most prevalent category, followed by fraud committed by
patients, with relatively fewer studies examining fraud by insurance carriers or complex conspiracy frauds
involving multiple parties. The review identified 30 studies utilizing private data sources and the remainder using
publicly available datasets, highlighting ongoing challenges with data accessibility that limit reproducibility and
comparative evaluation. Geographic distribution of research shows strong concentration in the United States with
96 studies, followed by China with 11 studies and Australia with 5 studies, reflecting both the scale of healthcare
systems in these countries and the availability of research datasets [17].

Auto insurance fraud detection has similarly attracted substantial research interest, with particular focus on
claim severity prediction and identification of exaggerated or fabricated claims [307]. Recent work presented a
systematic review of data mining techniques applied in automobile insurance fraud detection, documenting the
effectiveness of various classification algorithms and clustering approaches in identifying fraudulent claims [317].
The review emphasized that ensemble methods combining multiple algorithms consistently outperform individual
models across diverse datasets and fraud scenarios. Research in this domain has progressively incorporated richer
data sources including telematics data from vehicle sensors, geographic information about accident locations, and
social network analysis of relationships among claimants, repair shops, and medical providers [327].
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The theoretical foundations underlying DL applications to fraud detection draw from multiple disciplines
including statistical learning theory, information theory, and game theory perspectives on adversarial behavior.
Educational data mining and knowledge discovery methodologies provide frameworks for extracting meaningful
patterns from complex datasets where fraudulent behaviors represent rare anomalies within predominantly
legitimate activity [387]. The fundamental premise is that fraudulent behaviors, while deliberately designed to
mimic legitimate activity, inevitably exhibit detectable statistical irregularities that can be learned by sufficiently
flexible models trained on appropriate features [347]. However, the adversarial nature of fraud detection creates
unique challenges not present in many other ML applications, as fraudsters actively adapt their strategies in
response to detection systems, leading to a continuous arms race between fraud techniques and detection
capabilities [357].

DL architectures offer particular advantages for this adversarial setting through their capacity for continuous
learning and adaptation. Transfer learning approaches enable models trained on one insurance type or geographic
region to be adapted for different contexts, reducing the need for large labeled datasets in every new deployment
scenario [86]. Ensemble methods that combine predictions from multiple diverse models provide robustness
against concept drift and adversarial manipulation attempts [377]. Recent advances in meta-learning and few-shot
learning show promise for rapid adaptation to emerging fraud types based on limited examples [887]. These
capabilities are particularly valuable given that new fraud schemes constantly emerge and labeled examples of
novel fraud types are typically scarce in the period immediately following their introduction.

3. Deep Learning Architectures and Techniques

Convolutional Neural Networks represent one of the foundational DL architectures that has been successfully
adapted from its original image processing applications to insurance fraud detection. CNNs employ specialized
layers that apply learnable filters to input data, automatically discovering relevant local patterns and feature
combinations without manual specification [397. In insurance fraud detection contexts, CNNs treat structured
tabular claim data as two-dimensional matrices where convolutional operations can identify spatial patterns across
related variables [187. The hierarchical feature learning capability of CNNs allows them to progressively build
complex representations from simple features, with early layers detecting basic patterns and deeper layers
combining these into sophisticated fraud indicators. Recent implementations have demonstrated that CNN-based
models can achieve competitive performance with traditional ML approaches while offering greater flexibility and
reducing the burden of manual feature engineering [807]. Xia, Zhou, and Zhang developed a CNN-LSTM hybrid
model for auto insurance fraud detection that achieved 89.6% accuracy and 90.7% precision by automatically
learning feature representations, significantly reducing the complexity and expert knowledge requirements
associated with traditional feature engineering approaches [407]. The model demonstrated particular effectiveness
in capturing subtle patterns in claim amounts, service provider relationships, and temporal characteristics that
human-designed features might overlook.

Abakarim, Lahby, and Attioui proposed a CNN-based fraud detection model enhanced with ensemble bagging
techniques that achieved 98% accuracy through the combination of multiple CNN models trained on difterent
subsets of the data [417. The ensemble approach provides robustness by aggregating predictions from diverse
models, reducing the risk of overfitting to idiosyncrasies in the training data and improving generalization to new
cases. The computational efficiency of CNNs makes them particularly attractive for real-time fraud screening
applications where decisions must be made rapidly during claims processing. Modern CNN architectures can
process thousands of claims per second on standard hardware, enabling their deployment as automated screening
tools that flag suspicious cases for detailed human investigation [427. However, CNNs face limitations when
dealing with sequential temporal patterns and long-range dependencies in claim histories, motivating the
development of hybrid architectures that combine CNNs with recurrent networks.

Recurrent Neural Networks and their advanced variants including LSTM and GRU networks are specifically
designed to process sequential data by maintaining internal memory states that capture temporal dependencies
[437]. Standard RNNs suffer from the vanishing and exploding gradient problem when processing long sequences,
which limits their ability to capture long-term dependencies crucial for fraud detection where patterns may span
multiple claims over extended time periods [447]. LSTMs address this fundamental limitation through a
sophisticated gating mechanism comprising input gates that control what information enters memory, forget gates
that determine what information to discard, and output gates that regulate what information to output from
memory [45]. This architecture enables LSTMs to selectively retain relevant information over extended sequences
while discarding irrelevant details, making them highly effective for modeling temporal patterns in insurance fraud
scenarios.

Lai et al. employed LSTM networks to analyze brain injury insurance claims, achieving 74.33% accuracy in
predicting fraudulent claims by capturing complex temporal patterns in medical treatment sequences that
traditional methods struggled to identitfy [467]. The study demonstrated LSTM's capability to learn that certain
sequences of treatments, the timing between procedures, and the progression of claimed symptoms contain subtle
indicators of fabricated or exaggerated injuries. Research has shown that LSTM models exhibit sustained growth
in application across financial fraud detection domains, with particularly sharp increases from 2022 to 2024, driven
by the inherently sequential nature of transaction and claims data where temporal context provides critical
information [17]. GRU networks represent a simplified variant of LSTMs that combine the forget and input gates
into a single update gate and merge the cell state and hidden state, reducing computational complexity while
maintaining competitive performance [477]. While GRUs require fewer parameters and train faster than LSTMs,
empirical studies in fraud detection have generally shown LSTMs achieving slightly higher accuracy, particularly
for complex sequential patterns requiring long-term memory capabilities, though the performance difference is
often modest and context-dependent [487].

The integration of CNNs and LSTMs into hybrid architectures represents a significant advancement in
insurance fraud detection, leveraging the complementary strengths of spatial feature extraction through
convolutional layers and temporal dependency modeling through recurrent layers [497. These hybrid models have
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consistently demonstrated superior performance compared to standalone architectures across multiple insurance
fraud detection benchmarks, achieving state-of-the-art results on challenging datasets [407]. Reddy et al. proposed
a multi-contextual modeling approach integrating CNN and bidirectional LSTM for financial fraud detection,
achieving effective capture of both spatial and sequential dependencies in transaction patterns [507]. The
bidirectional architecture allows the model to consider both past and future context when processing each time
step, enhancing its ability to detect subtle fraudulent patterns that may only become apparent when examining
complete claim sequences rather than processing them in strict temporal order. A comprehensive evaluation
analyzing hybrid models for risk assessment in insurance companies demonstrated that CNN-LSTM architectures
outperform standalone models in accurately assessing and categorizing fraud risk levels across diverse policyholder
populations and claim types [517]. The CNN component extracts relevant features from structured claim data
including amounts, service codes, provider characteristics, and geographic information, while the LSTM
component models how these features evolve over time, capturing patterns like gradually escalating claim
frequencies or systematic shifts in claim types that may indicate fraud.

Graph Neural Networks have emerged as a particularly powerful architecture for insurance fraud detection by
explicitly modeling relational structures and network connections among entities involved in insurance claims
[157]. Unlike traditional neural networks that process independent samples, GNNs operate on graph-structured
data where nodes represent entities such as policyholders, healthcare providers, or claims, and edges represent
relationships such as shared providers, co-occurrence in claims, or social connections [527. This graph-based
representation enables GNNs to capture complex fraud patterns that involve collusion among multiple actors,
referral networks directing patients to complicit providers, or organized fraud rings coordinating their activities
across many claims. Hong et al. proposed a multi-channel heterogeneous graph structure learning approach to
detect health insurance fraud, utilizing diverse graph-based features from different claim aspects to capture
complex relationships and patterns that substantially improved detection accuracy [537]. The multi-channel
architecture processes multiple views of the data simultaneously, including patient-provider relationships,
diagnosis-procedure associations, and temporal claim sequences, integrating these diverse perspectives to identify
fraudulent patterns that might be invisible when examining any single view in isolation.

The eftectiveness of GNNs for fraud detection stems from their ability to propagate information across the
graph through message passing mechanisms, where each node aggregates information from its neighbors to update
its representation [547]. This enables the model to identify suspicious patterns such as fraudsters who primarily
connect with legitimate entities to camoutflage their behavior, yet can still be detected through subtle differences in
their network positions compared to truly legitimate actors. Research demonstrated that GNN-based models
significantly outperformed baseline classifiers in credit card fraud detection by leveraging the transaction graph
connecting users and merchants, a finding that generalizes to insurance fraud where relationships among
claimants, providers, and referral sources contain valuable fraud signals [557. GNNs have proven particularly
effective for detecting organized fraud rings and collusion networks, achieving accuracies exceeding 84% in
healthcare fraud detection tasks where traditional feature-based methods struggle because individual claims may
appear legitimate when examined in isolation [167]. The heterogeneous graph structures common in insurance
data, where multiple types of nodes and edges coexist, require specialized GNN architectures that can handle
different relationship types and node attributes simultaneously [537].

Autoencoders and Variational Autoencoders (VAEs) represent unsupervised and semi-supervised DL
architectures that have shown promise for fraud detection by learning compressed representations of normal
behavior and using reconstruction error as an anomaly score [56 . Traditional autoencoders consist of an encoder
network that compresses input data into a lower-dimensional latent representation and a decoder network that
attempts to reconstruct the original input from this compressed form [577]. The fundamental insight for fraud
detection is that autoencoders trained on predominantly legitimate claims will learn to accurately reconstruct
normal patterns, while fraudulent claims that deviate from learned normal behavior will exhibit high
reconstruction errors that can be thresholded to identify anomalies [587]. VAEs extend this framework by learning
a probabilistic distribution in the latent space rather than fixed encodings, enabling both reconstruction and
generation of new samples that resemble the training data [597. This generative capability can be leveraged to
create synthetic fraudulent samples for training purposes, addressing the class imbalance problem by augmenting
the minority fraud class.

Generative Adversarial Networks (GANs) provide another approach to addressing class imbalance through
synthetic data generation, consisting of a generator network that creates fake samples and a discriminator network
that attempts to distinguish real from fake samples [607. The adversarial training process where the generator
tries to fool the discriminator while the discriminator tries to detect fakes leads both networks to improve,
ultimately producing a generator capable of creating highly realistic synthetic fraudulent transactions that can
augment training datasets [617]. Self-attention GANSs leverage attention mechanisms to identify crucial features
and patterns within extensive transaction datasets, fostering improved understanding and refined identification of
fraud [627. The self-attention mechanism allows the model to focus on the most relevant features for fraud
detection rather than treating all input dimensions equally, improving both performance and interpretability by
highlighting which factors drive fraud predictions.

4. Datasets and Performance Evaluation

The availability and characteristics of datasets fundamentally determine both the feasibility of DL research and
the practical applicability of resulting models in real-world insurance fraud detection systems. Publicly available
datasets enable reproducible research, facilitate comparative evaluation of different approaches, and lower barriers
to entry for researchers lacking access to proprietary insurance data, yet such datasets remain limited in number
and often lack the complexity and scale of real-world insurance operations [25]. The Medicare dataset represents
one of the most widely used public resources for healthcare fraud detection research, containing claims data from
the Centers for Medicare and Medicaid Services covering physician services, prescription drugs, and durable
medical equipment [637. The Medicare Part B dataset describes services and procedures that healthcare
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professionals provide to Medicare fee-for-service beneficiaries, including provider-level attributes such as National
Provider Identifier, credentials, and address, along with claims information describing procedure codes, charge
amounts, payment amounts, and service locations [647]. The Medicare Part D Prescriber dataset contains
prescription drug information including drug names, costs, and prescriber characteristics, enabling analysis of
potentially fraudulent prescribing patterns.

The DE-SynPUF dataset represents a synthetic version of Medicare claims data specifically designed to
address privacy concerns while maintaining realistic statistical properties for research purposes [657]. This dataset
consists of 66,773 insurance claim records covering the period 2008-2010 and has been employed in multiple fraud
detection studies to develop and evaluate ML and DL approaches [257]. However, the synthetic nature of the data
raises questions about how well findings generalize to real fraud patterns, as the data generation process may not
tully capture the complex behavioral characteristics of actual fraudsters. Auto insurance fraud datasets are less
commonly available in the public domain compared to healthcare data, with most research relying on proprietary
datasets from specific insurance companies [307]. The limited public datasets that do exist often contain fewer
teatures and smaller sample sizes compared to healthcare datasets, constraining the complexity of models that can
be effectively trained and evaluated.

Table 1 presents a comprehensive comparison of commonly used datasets in insurance fraud detection research,
including their characteristics, availability, and typical applications. The table demonstrates the significant
variation in dataset size, fraud rate, and feature richness across different insurance domains, highlighting the
challenges researchers face in selecting appropriate datasets for different research objectives.

Table 1. Comparison of commonly used dataset in insurance fraud detection research.

Dataset Name Domain Size (Records) | Fraud Rate | Features | Access | Primary Applications

Medicare Part Healthcare ~1.2 million 0.08-0.5% 45+ Public | Provider fraud detection,

B service pattern analysis,
prescription fraud

Medicare Part Healthcare ~900,000 0.05-0.8% 38+ Public | Prescription fraud, opioid

D abuse detection, prescriber
behavior analysis

CMS DE- Healthcare 66,773 1-3% 25-30 Public | Synthetic data for privacy-

SynPUF preserving research,
algorithm benchmarking

Auto Insurance Auto ~15,000 5-8% 33 Public | Claim severity prediction,

(Kaggle) fabrication detection,
exaggeration analysis

Private Auto Auto 100,000+ 2-6% 50-80 Private | Collision fraud, staged

Claims accident detection, inflated
repair costs

European Credit/Financial 284,807 0.172% 30 (PCA) | Public | Transaction fraud,

Credit Card anomaly detection,
imbalanced learning
techniques

IEEE-CIS Credit/Financial 590,540 3.6% 434 Public | E-commerce fraud, device

Fraud fingerprinting, behavioral
analysis

Health Healthcare 50,000-500,000 1-4% 40-100 | Private | Diagnosis coding fraud,

Insurance unbundling, upcoding

Claims detection

Life Insurance Life/Annuity Variable 0.5-2% 20-50 Private | Application fraud,
beneficiary fraud, premium
evasion

Note: Data compiled from systematic reviews by du Preez et al. (2025), Hamid et al. (2024), Chen et al. (2025), and individual dataset documentation. Fraud
rates vary by institution, detection methods, and data collection periods. PCA indicates features have been transformed through Principal Component Analysis
for privacy protection. Size estimates reflect typical available versions; actual operational datasets may be significantly larger.

Evaluating the performance of fraud detection models requires careful selection of metrics appropriate for the
extreme class imbalance characteristic of fraud datasets, where traditional accuracy measures can be misleading or
meaningless [667]. Accuracy defined as the ratio of correct predictions to total predictions provides an intuitive
overall performance measure but fails catastrophically on imbalanced data where a naive model predicting all cases
as legitimate can achieve very high accuracy while completely missing all fraud cases [67]. FFor example, in a
dataset where only 1% of claims are fraudulent, a model that predicts all claims as legitimate achieves 99% accuracy
despite zero fraud detection capability, illustrating why accuracy is inappropriate as a primary metric for fraud
detection. Precision defined as the proportion of positive predictions that are actually positive addresses the
question of how many flagged cases are truly fraudulent, directly relating to operational efficiency as high precision
minimizes wasted investigation effort on false alarms [687. Precision is critical in contexts where investigation
resources are limited and false positives create substantial costs through unnecessary investigations, damaged
relationships with legitimate policyholders, or delayed claims processing.

Recall or sensitivity defined as the proportion of actual fraud cases correctly identified addresses the
complementary question of how many true frauds the model successfully detects, directly relating to financial
protection as high recall minimizes losses from undetected fraud [697. Recall is paramount in contexts where
missing fraud cases creates severe consequences including major financial losses, regulatory penalties for
inadequate fraud prevention, or erosion of trust if fraud becomes widespread. The fundamental trade-oft between
precision and recall represents a core challenge in fraud detection system design, as increasing the sensitivity of
detection by flagging more cases as suspicious inevitably increases false positives and reduces precision, while
increasing precision by being more selective about what to flag inevitably misses more true frauds and reduces
recall. The F'1 score defined as the harmonic mean of precision and recall provides a balanced metric that accounts

6

© 2025 by the authors; licensee Eastern Centre of Science and Education, USA



Journal of Banking and Financial Dynamaics, 2025, 9(8):1-11

for both concerns, achieving its maximum value of one only when both precision and recall are perfect and
generally tracking the lower of the two metrics [707].

Figure 2 illustrates the performance comparison of different deep learning architectures across key evaluation
metrics including accuracy, precision, recall, and F1 score based on aggregated results from recent studies. The
visualization demonstrates that hybrid CNN-LSTM models achieve the most balanced performance across all
metrics, while GNN-based approaches excel particularly in precision for fraud network detection tasks.
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Figure 2. Performance comparison of deep learning architectures for insurance fraud detection.

Source: Data aggregated from recent studies: Xia et al. (2022) for CNN-LSTM hybrid, Hong et al. (2024) for GNN, Abakarim et al. (2023) for CNN ensemble,
Lai et al. (2022) for LSTM, and systematic review by Chen et al. (2025). Metrics represent average performance across multiple datasets. Hybrid CNN-LSTM
models demonstrate the most balanced performance across all metrics, while GNN excels in precision for fraud network detection tasks.

The Area Under the Receiver Operating Characteristic curve (AUC-ROC) provides a threshold-independent
performance measure by evaluating classification performance across all possible decision thresholds [717. The
ROC curve plots true positive rate against false positive rate as the classification threshold varies, and the area
under this curve ranges from 0.5 for random classification to 1.0 for perfect classification. However, AUC-ROC can
be misleading on highly imbalanced datasets because the false positive rate in the denominator is calculated using
the large number of negative examples, potentially obscuring poor performance on the minority positive class. The
Area Under the Precision-Recall curve (AUC-PR) addresses this limitation by plotting precision against recall,
focusing directly on performance on the positive class and providing more informative evaluation for imbalanced
datasets [727].

Empirical comparisons across studies reveal that hybrid CNN-LSTM architectures consistently achieve among
the highest performance levels for insurance fraud detection tasks. Xia, Zhou, and Zhang reported that their CNN-
LSTM model for auto insurance fraud detection achieved 89.6% accuracy, 90.7% precision, and 89.6% recall,
substantially outperforming standalone CNN and LSTM models evaluated on the same dataset [407]. The hybrid
architecture demonstrated particular strength in capturing both spatial feature patterns through the CNN
component and temporal claim sequence patterns through the LSTM component. Abakarim, Lahby, and Attioui
achieved 98% accuracy using a CNN-based model with ensemble bagging for fraud detection, demonstrating the
substantial performance gains possible from ensemble methods that combine multiple models [417]. The ensemble
approach provided robustness by aggregating predictions from diverse models trained on different data subsets,
effectively reducing overfitting and improving generalization to new cases.

5. Explain Ability and Emerging Trends

The black box nature of many high-performing DL architectures poses significant challenges for practical
fraud detection deployment where stakeholders require understandable explanations for algorithmic decisions
affecting individuals [227. Explainable AI (XAI) frameworks aim to make DL models more interpretable by
providing insights into which features drive predictions, how the model arrives at particular decisions, and why
certain cases receive high fraud scores [737]. The importance of XAI for fraud detection stems from multiple factors
including regulatory requirements in many jurisdictions that mandate transparency in automated decision-making
affecting individuals, practitioner needs for fraud investigators to understand why cases were flagged to conduct
effective investigations, model debugging and validation to identify and correct biases or errors in model logic, and
stakeholder trust building confidence among claims processors, policyholders, and regulators that automated
systems make reasonable decisions.

SHapley Additive exPlanations (SHAP) represents one of the most widely adopted XAI techniques, providing a
unified framework for interpreting model predictions based on game theory principles [747]. SHAP values quantify
each feature's contribution to a particular prediction by calculating the expected change in model output when that
feature is included versus excluded, considering all possible feature combinations. The additive nature of SHAP
values enables intuitive interpretation where features with positive SHAP values push predictions toward fraud
while features with negative SHAP values push toward legitimate, and the magnitude reflects the strength of
influence. Research applying SHAP to fraud detection has demonstrated that the technique successfully identifies
the most influential features distinguishing fraudulent from legitimate claims, providing actionable insights for
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investigators and enabling validation that models rely on sensible fraud indicators rather than spurious
correlations [757. Hosseini Chagahi et al. employed SHAP to identify the top ten most important features for
distinguishing fraud from normal transactions in credit card fraud detection, using these features in their attention-
based model to achieve high accuracy and robust generalization [767].

Local Interpretable Model-agnostic Explanations (LIME) provides an alternative XAI approach that explains
individual predictions by approximating the complex DL model locally with a simpler interpretable model such as
linear regression or decision tree [77]. LIME perturbs the input features of a specific instance and observes how
predictions change, then fits an interpretable model to these perturbations weighted by proximity to the instance of
interest. This local approximation reveals which features were most influential for that particular prediction
without requiring access to the global model structure. LIME has been successfully applied to fraud detection to
generate case-specific explanations that investigators can use to understand why particular claims received high
fraud scores, though the technique faces limitations including potential instability where small changes in sampling
of perturbations can produce different explanations.

Attention mechanisms integrated directly into neural network architectures provide inherent interpretability
by learning to focus on the most relevant inputs for prediction [787. Attention weights assigned to different
features, time steps, or graph nodes indicate their relative importance for the model's decision, enabling
interpretation of what the model considers most relevant. Farbmacher et al. developed an Explainable Attention
Network specifically for fraud detection in claims management, where attention weights highlight the most critical
teatures of fraudulent behavior enabling transparent decision-making [797. The integration of attention provides
superior interpretability compared to post-hoc explanation methods because the attention weights directly reflect
what information the model actually used rather than attempting to reverse-engineer the reasoning process after
the fact.

Federated learning has emerged as a promising approach to address data privacy concerns and enable
collaborative model training across multiple insurance institutions without centralizing sensitive data [807. In
federated learning, each participating institution trains a local model on their private data, and only model
parameters or gradients are shared with a central coordinator that aggregates updates to improve a global model.
This approach enables institutions to benefit from larger effective training datasets and diverse fraud patterns
while maintaining data privacy and regulatory compliance. Recent pilot implementations have demonstrated that
federated learning can achieve comparable accuracy to centralized training while providing stronger privacy
guarantees [817]. The technique is particularly valuable for insurance fraud detection where individual institutions
may have limited labeled fraud examples, but collaborative learning across multiple institutions could substantially
improve detection capabilities.

Quantum machine learning represents an emerging frontier that may offer computational advantages for
certain fraud detection tasks, though practical applications remain primarily experimental at this stage [827.
Quantum algorithms leveraging superposition and entanglement could potentially accelerate training of complex
models or enable more efficient exploration of high-dimensional feature spaces. Recent theoretical work has
explored quantum graph neural networks for fraud detection, suggesting potential advantages for analyzing
complex relationship structures, though significant technical challenges remain in scaling these approaches to real-
world problem sizes. As quantum computing hardware continues to mature, this represents an area for continued
monitoring and potential future application.

Blockchain integration with machine learning has been proposed as an approach to enhance data integrity and
transparency in fraud detection systems [837]. Blockchain technology can provide immutable audit trails of claims
data, model predictions, and investigation outcomes, enabling verification of system operations and facilitating
regulatory compliance. Some implementations have explored using blockchain to securely share fraud intelligence
across institutions while maintaining privacy protections. The combination of blockchain's transparency and
immutability with ML's analytical power offers potential synergies, though practical implementations must
carefully balance the benefits against the computational costs and complexity of blockchain systems.

6. Conclusion

This comprehensive review has examined the application of deep learning to insurance fraud detection through
systematic analysis of 57 studies published between 2019 and 2025, revealing substantial progress in both
methodological sophistication and empirical performance. The evidence demonstrates that DL approaches,
particularly hybrid architectures combining CNNs with LSTMs and GNN-based models for relational fraud
detection, consistently outperform traditional rule-based and classical ML methods across healthcare, auto, and life
insurance domains. Hybrid CNN-LSTM models achieve accuracies ranging from 89.6% to 98% on standard
benchmarks, representing substantial improvements over traditional approaches, while GNNs demonstrate
particular effectiveness for detecting collusive fraud networks with accuracies exceeding 84%. The automatic
teature learning capabilities of DL eliminate the need for extensive manual feature engineering, enabling models to
discover subtle fraud indicators that human experts might overlook.

However, significant challenges continue to impede both research advancement and practical deployment. The
severe class imbalance characteristic of fraud datasets, where fraudulent cases represent only 0.03-3% of total
claims, creates fundamental difficulties for learning algorithms that tend to optimize overall accuracy. While
techniques including synthetic oversampling, cost-sensitive learning, and ensemble methods provide partial
solutions, no approach fully resolves this challenge. Model interpretability remains a critical concern, as many
high-performing DL architectures operate as black boxes providing predictions without transparent reasoning,
conflicting with regulatory requirements and practitioner needs for explainable decisions. Current XAl techniques
including SHAP, LIME, and attention mechanisms provide valuable but imperfect solutions to interpretability
challenges.

Data availability represents another major obstacle, with limited public datasets constraining reproducible
research and comparative evaluation. Privacy regulations impose stringent constraints on data collection and
sharing, creating barriers to both research and deployment. The adversarial nature of fraud detection, where
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fraudsters actively adapt strategies in response to detection systems, requires continuous model updating and
robust architectures resistant to concept drift. Future research should prioritize development of inherently
interpretable DL architectures that provide transparent reasoning by design, creation of high-quality benchmark
datasets through partnerships between researchers and insurance organizations, exploration of federated learning
approaches enabling collaborative training across institutions without centralizing sensitive data, investigation of
transfer learning techniques leveraging knowledge from data-rich domains to improve detection in data-scarce
contexts, and development of real-time detection systems with low-latency inference suitable for online claims
processing.

The integration of emerging technologies including quantum computing, blockchain for data integrity, and
advanced privacy-preserving techniques offers promising directions for future work. Causal inference methods that
understand not just correlations but actual causal relationships between variables and fraud could improve
robustness and interpretability. Meta-learning approaches enabling rapid adaptation to new fraud types from
limited examples represent important research directions given the constantly evolving fraud landscape. The
development of comprehensive evaluation frameworks that go beyond technical performance metrics to assess real-
world operational impact, cost-effectiveness, and fairness across different demographic groups will be essential for
responsible deployment of DL fraud detection systems. As the field continues to mature, the focus must remain on
developing systems that not only achieve high detection accuracy but also operate transparently, fairly, and in
accordance with ethical principles and regulatory requirements.
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