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Abstract

The evolution of agentic Al has fundamentally redefined the Banking, Financial Services, and
Insurance (BFSI) sector’s approach to risk management. For decades, financial institutions have
relied on deterministic risk assessment controllers governed by fixed models, static thresholds,
and linear workflows. While effective in stable conditions, these legacy systems struggle to handle
the dynamic, interconnected, and data-intensive nature of today’s financial ecosystems [1].
Modern BFSI operations generate massive streams of multimodal data, including structured
financial metrics, unstructured text, behavioural signals, and real time market data that exceed the
processing capacity of traditional risk engines. As a result, many risk controllers remain reactive,
discovering threats only after exposure or regulatory breach. The emergence of Agentic Al
systems addresses these limitations by introducing autonomy, adaptivity, and explainability into
the risk control process. Unlike static models, these systems employ specialized Al agents that
collaborate across domains—credit, liquidity, compliance, cybersecurity, and actuarial—using
shared context and feedback loops. Each agent continuously perceives, reasons, and acts within its
environment to maintain optimal control states. At the core of this evolution lies Reinforcement
Learning (RL) and multi-agent orchestration, enabling continuous decision optimization under
uncertainty [27]. RL agents learn from environmental feedback, dynamically adjusting thresholds
and capital allocations in response to market, operational, or regulatory changes. This paper
presents a technical framework detailing how agent based architectures, reinforced by machine
reasoning and control theory, can autonomously mitigate risk across BFSI domains. It explores
how these systems improve early warning capabilities, enhance model governance, and ensure
regulatory compliance all while maintaining explainability and auditability in high stakes
environments. In doing so, Agentic Al establishes the foundation for self adaptive risk ecosystems,
capable of operating with human oversight yet independent in execution transforming risk
management from a reactive function into a predictive and preventive intelligence layer for the
modern financial enterprise.

Keywords: Agentic Al, Explainable AI (XAI), Financial services, and insurance), Multi-agent systems (MAS), Reinforcement learning (RL),
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1. Introduction

Risk assessment controllers in the Banking, Financial Services, and Insurance (BIF'SI) sector form the backbone
of modern financial governance. They define how institutions evaluate, monitor, and mitigate exposure to credit
losses, market volatility, liquidity shortfalls, operational breakdowns, cyber intrusions, and regulatory non-
compliance. These controllers serve as the critical decision fabric that connects business processes, risk models, and
regulatory compliance functions into an integrated ecosystem of control.

Historically, BFSI institutions have depended on rule based and statistical models to quantify and manage risk.
These systems rely on pre-defined thresholds, deterministic algorithms, and manually maintained control
hierarchies. While such frameworks perform well in predictable environments, they often fail to adapt to emerging
risk patterns driven by rapidly evolving data sources, interconnected markets, and non-linear dependencies across
financial products [37. The consequences include lagging risk recognition, fragmented decision-making, and
operational inefficiency when responding to fast-moving crises or regulatory changes.

Moreover, the modern BFSI environment operates in an era of data explosion, timely regulatory submissions,
operational resiliency and cognitive complexity. Every transaction, customer interaction, and market fluctuation
generates high-frequency data across multiple channels structured, semi-structured, and unstructured. Traditional
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risk systems were not designed to continuously assimilate and reason over such diverse data modalities. As
decision cycles shorten from quarterly reviews to near real-time oversight, static risk models lack the contextual
intelligence required to monitor the suspicious customers anomalous behaviors and maintain resilience, regulatory
compliance dynamically.

This operational gap has accelerated the adoption of Agentic Al systems, a new class of architectures that
combine autonomous agents, machine reasoning, and reinforcement learning (RL) to achieve continuous risk
awareness and adaptive risk control assessment. These systems emulate human decision-making at scale,
embedding intelligence directly into workflows rather than relying solely on centralized supervision. An agent
within this framework is an autonomous entity that perceives its environment, reasons about potential actions, and
executes control strategies aligned with institutional risk policies.

Through multi agent orchestration, individual risk agents responsible for domains such as credit, liquidity,
fraud compliance, cybersecurity, and actuarial analysis collaborate under an orchestrator layer that harmonizes
their decisions. This architecture supports dynamic coordination, enabling the institution to react not only to
known risks but also to emergent threats detected through behavioural or causal signals. Reinforcement learning
techniques allow agents to refine their decision policies based on feedback, optimizing outcomes like loss
minimization, capital efficiency, or regulatory compliance.

Furthermore, agentic architectures enable explainability and auditability through continuous context capture.
Unlike black-box AI models, these agents operate under defined objectives and maintain traceable reasoning paths,
supporting the stringent documentation and validation requirements of regulatory frameworks [4].

In essence, Agentic Al transforms risk assessment controllers from static evaluators into adaptive control
systems capable of learning, predicting, and responding in real-time. This transition represents a paradigm shift
from reactive monitoring to autonomous prevention and resilience engineering where financial institutions can
anticipate disruption before it materializes. As the BIFSI industry moves toward intelligent automation and real-
time governance, Agentic Al will serve as the foundational architecture that bridges Al driven risk intelligence
with human oversight and regulatory assurance, ensuring both performance and compliance in a volatile digital
landscape.

2. Agentic Al Architecture for Risk Mitigation

The Agentic Al architecture represents a fundamental shift from rule-based risk management to intelligent,
adaptive, and self-regulating systems. In the context of BFSI, this architecture establishes a distributed network of
autonomous agents capable of monitoring real-time conditions, reasoning across multidimensional data, and
executing corrective or preventive actions. Rather than operating as static risk calculators, these agents function as
decision-making entities that continuously learn from feedback and optimize their control strategies.

At its core, the Agentic Al system functions as a multi agent ecosystem, where each agent be it for credit,
liquidity, compliance, or cybersecurity perceives its environment, takes actions based on defined objectives, and
shares insights through an orchestrator. The architecture ensures that these agents cooperate through shared state
awareness, enabling cross-domain reasoning and holistic risk assessment.

2.1. Architectural Overview
The Agentic Al system for BFSI risk control assessment mitigation is designed as a layered architecture
comprising five interdependent components:

2.1.1. Data Ingestion and Contextualization Layer
This foundational layer is responsible for aggregating and contextualizing data from diverse financial and
operational sources. BFSI systems typically generate terabytes of structured and unstructured data daily ranging
from transactional logs, market feeds, and credit exposures to documents, customer communications, and external
signals such as economic indicators or news sentiment.
Key functions include:
e Data fusion and normalization: Unifies data from core banking systems, ERPs, trading engines, CRM
tools, and regulatory repositories [57].
e Multimodal integration: Ingests both textual and numerical data, as well as behavioural (clickstream,
biometrics) and image-based information for insurance and KYC processes.
e TFeature streaming: Employs event-driven architectures (e.g., Katka or Flink) to stream risk indicators and
signals in near real-time.
This layer serves as the “sensory interface” for all downstream agents, ensuring that perception is consistent,
reliable, and temporally aligned across the enterprise.
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Figure 1. Business Process diagram of Agentic Al Architecture for Risk Mitigation.

2.1.2. Risk Orchestrator Agent

The Risk Orchestrator Agent serves as the central intelligence hub coordinating multiple domain specific
agents. It maintains a unified view of enterprise-wide risk and ensures consistency in decisions made by individual
agents. Technically, the orchestrator is implemented as a message-driven coordination layer, often leveraging
APIs, reinforcement signals, or vector-based embeddings for semantic context sharing among agents [6].
Key responsibilities include:

e Cross-agent communication: Mediates data exchange between domain agents using a shared ontology or
graph-based knowledge model.

e Regulatory policy harmonization: Aligns agent behaviours with the institution’s overall risk appetite,
capital constraints, and compliance mandates.

e Conflict resolution: When multiple agents recommend conflicting actions (e.g., liquidity expansion vs.
credit tightening), the orchestrator applies optimization logic or hierarchical weighting to resolve trade-
offs.

e Scenario synthesis: Integrates simulation outputs from individual agents to produce consolidated stress-
test results and forecasted risk exposure curves.

Technically, the orchestrator is implemented as a message-driven coordination layer, often leveraging APIs,

reinforcement signals, or vector-based embeddings for semantic context sharing among agents.

2.1.8. Domain Agents
Domain Agents represent the operational backbone of the Agentic Al system. Each agent autonomously
governs a specific risk dimension and is equipped with reasoning and control capabilities aligned to that domain’s
unique challenges.
Examples include:
e Credit Risk Agent: Continuously monitors borrower behaviour, market exposure, and portfolio
concentrations to predict probability of default (PD) and recommend exposure adjustments.
e Liquidity Agent: Simulates cash flow positions, stress scenarios, and funding sources to maintain capital
adequacy and avoid shortfalls.
e Compliance Agent: Uses natural language models and retrieval-augmented generation (RAG) pipelines to
interpret new regulatory publications and map them to internal control requirements.
e Cyber Risk Agent: Monitors system telemetry, identity graphs, and anomaly signals to detect and contain
security threats autonomously.
e Actuarial Agent: Optimizes pricing and reserve strategies in insurance portfolios using real-time actuarial
data and predictive modeling.
Each domain agent possesses:
e Perception (environmental data ingestion and contextualization),
¢ Reasoning (analytical modeling, causal inference, and simulation), and
e Actioning (execution of control triggers via connected systems or API endpoints).
Together, they enable distributed risk intelligence where each agent contributes to a shared enterprise
understanding while maintaining autonomy in its specialized function.

2.1.8.1. Reinforcement Learning (RL) and Optimization Layer

The Reinforcement Learning layer provides adaptive intelligence to the agent network. Traditional supervised
models in risk management rely on static datasets and predefined labels, whereas RL enables continuous policy
refinement based on reward and penalty outcomes.

In this architecture, agents interact with the environment (e.g., financial markets, transaction systems,
operational data streams) to learn optimal actions that balance profitability and compliance risk. The RL
tramework operates as follows:

e State space: Represents the current environment, including credit exposure, market volatility, or liquidity

ratio.
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e Actions: Correspond to possible interventions—tightening exposure, adjusting hedges, reallocating
liquidity, or raising alerts.
e Rewards: Quantify desired outcomes such as loss reduction, compliance adherence, or capital efficiency.
e Feedback: The system continuously learns from post-action metrics (defaults prevented, breaches avoided)
and adjusts its policy network accordingly.
A Multi-Agent RL (MARL) framework allows coordination between agents such as the Credit and Liquidity
Agents—enabling collaborative optimization. For instance, one agent might reduce credit exposure while another
ensures liquidity sufficiency, balancing the overall risk-reward profile.

2.2. Governance and Explainability Layer
There is no Al system in BFSI can operate without governance, transparency, and auditability. The
Governance Layer ensures that agent decisions remain interpretable, compliant, and aligned with human oversight
structures.
Its core functions include:
e Explainability: Integrates model-agnostic interpreters (e.g., SHAP, LIME) to provide justifications for each
agent’s actions.
e Traceability: Maintains full decision lineage, linking data inputs to model outputs, reinforcing compliance
with regulations like SR 11-7, Basel Model Risk Guidelines [77.
e Ethical and regulatory oversight: Embeds business rules that constrain agent autonomy in sensitive
decisions, enforcing human-in-the-loop (HITL) review for material actions.
e Audit interface: Generates self-documenting reports summarizing risk posture, model decisions, and
remediation actions.
This layer transforms Agentic Al from a black-box decision system into a transparent control framework that
regulators and auditors can evaluate with confidence.

2.8. Communication and Control Dynamics

Agentic Al systems rely on bidirectional communication between domain agents and the orchestrator. Each
agent publishes contextual signals (risk scores, alerts, policy recommendations) while subscribing to global policies
and system-wide constraints. The orchestrator interprets and consolidates these signals to update the overall
enterprise risk state, feeding it back into the agents for iterative refinement.

Internally, this creates a continuous control feedback loop:

1. Perception (data ingestion) —

Reasoning (agent analysis and prediction) —
Decision (orchestrator synthesis) —

Action (execution of control measures) —

. Feedback (reward evaluation through RL).

Through this cyclical process, the system evolves toward real-time resilience, capable of detecting deviations,
learning from outcomes, and autonomously adjusting its behaviour all within a governance-controlled
environment.

Hence the Agentic Al architecture for risk mitigation provides BFSI organizations with a self-learning,
explainable, and scalable framework that moves beyond siloed analytics toward continuous, intelligent risk
orchestration. By blending autonomous reasoning, multi-agent collaboration, and reinforcement learning, this
architecture transforms risk management from a static compliance function into an adaptive control ecosystem that
safeguards financial institutions in a constantly evolving digital landscape.
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Figure 2. Multi-Agent Orchestration for Risk Control —illustrating orchestration layer, RL feedback loop, and governance interface.
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3. How Agents Mitigate BFSI Risks

The Agentic Al framework, each agent operates as a specialized, autonomous component dedicated to
monitoring and managing a specific risk domain. These agents function collaboratively through a shared state
representation, enabling holistic enterprise-level awareness while preserving domain-level autonomy.

Through continuous perception, reasoning, and reinforcement learning (RL), they dynamically predict, detect,
and mitigate risk across the institution’s operational and financial landscape.

Agents exchange contextual signals such as credit exposure trends, liquidity stress indicators, compliance
alerts, or cyber intrusion graphs through the Risk Orchestrator Layer, ensuring unified situational awareness and
coordinated response. This structure transforms risk management into a distributed control network that learns,
adapts, and acts in near real-time.

3.1. Credit Risk — Credit Risk Agent
The Credit Risk Agent governs exposure across retail, commercial, and institutional portfolios. Traditional
credit assessment models rely on static scoring systems and historical data, limiting their ability to detect
emerging borrower risks.
By contrast, the Credit Risk Agent employs reinforcement learning and causal reasoning to adapt to dynamic
borrower behaviour and macroeconomic shifts.
[ts capabilities include:
e Dynamic credit scoring: Continuously recalibrates borrower creditworthiness using live repayment
histories, behavioural analytics, and transaction-level data [87.
e Exposure optimization: Learns optimal exposure levels by balancing potential profit with default
probability under changing market conditions.
e Feedback learning: Reinforces decision policies based on actual repayment outcomes, adjusting lending
thresholds and interest margins accordingly.
For example, if an early-stage credit delinquency pattern is detected, the agent automatically recommends
exposure reduction or restructuring actions—preventing defaults while maintaining profitability.

3.2. Market Risk — Market Risk Agent
The Market Risk Agent manages exposure to price volatility, interest rate changes, currency movements, and
derivative sensitivities.
This agent operates in an environment where rapid decision-making is crucial to preserving portfolio value. It
leverages multi-scenario simulations and stochastic modeling to evaluate portfolio responses under diverse stress
conditions.
Core functions:
e Sensitivity analysis: Computes real-time VaR (Value at Risk) and P&L attribution to understand the impact
of market shifts.
e Hedging optimization: Uses reinforcement learning to identify hedging strategies that minimize loss
without overcapitalizing risk buffers.
e Scenario synthesis: Continuously simulates hundreds of market paths, using probabilistic forecasting to
recommend rebalancing or delta-neutral positions.
The Market Risk Agent interacts with the Credit and Liquidity Agents, ensuring that capital and exposure
adjustments remain synchronized across the institution’s financial ecosystem.

3.8. Liquidity Risk — Liquidity Agent
Liquidity management requires balancing funding adequacy, reserve ratios, and operational flexibility.
The Liquidity Agent applies predictive analytics and RL-driven simulation to forecast cash flow gaps and pre-
emptively reallocate capital.
Capabilities include:
e TI‘unding gap prediction: Monitors inflows and outflows to predict short-term liquidity pressures based on
historical patterns and event-driven triggers.
e Capital reallocation: Initiates dynamic rebalancing of cash reserves, adjusting collateral and interbank
borrowing levels as required.
e Stress resilience modeling: Evaluates liquidity positions under systemic shocks or counterparty failures,
optimizing bufters in real time [97.
By operating in tandem with the Credit and Market Agents, the Liquidity Agent ensures enterprise-wide
solvency and funding continuity, even under extreme market volatility.

3.4. Operational Risk — Process Control Agent
Operational disruptions often arise from process errors, internal fraud, or automation failures. The Process
Control Agent acts as a real-time sentinel for operational integrity. It integrates telemetry data, audit logs, and
user behaviour analytics to detect process anomalies and policy breaches.
Functions include:
e Fraud detection: Employs graph neural networks and behavioural clustering to identify suspicious
transaction sequences.
e Process monitoring: Uses machine learning to establish process baselines and detect deviations from
standard operating patterns.
e Automation assurance: Validates that RPA and Al-based automations execute without unintended
exceptions or compliance violations.
The agent can autonomously trigger alerts, rollbacks, or workflow quarantines minimizing cascading failures
in complex operational pipelines.

5
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3.5. Cyber Risk — Cyber Defense Agent
In a digital-first BI'SI ecosystem, cyber resilience is non-negotiable. The Cyber Defense Agent combines graph
reasoning, intrusion detection, and reinforcement response mechanisms to autonomously protect enterprise
networks.
Key functions include:
e Threat graph analysis: Builds entity-relationship maps linking user behaviours, access patterns, and device
telemetry to detect anomalies.
e Attack surface minimization: Automatically isolates or quarantines compromised nodes upon detecting
lateral movement or privilege escalation.
e Adaptive defense: Reinforcement learning enables the agent to update defense strategies based on
simulated attack scenarios and observed threat outcomes.
By continuously learning from attempted intrusions, the Cyber Defense Agent evolves into a self-improving
digital immune system for BFSI infrastructure [107].

3.6. Compliance Risk — Regulatory Copilot Agent
The Regulatory Copilot Agent addresses one of the most complex challenges in BFSI: aligning operational
behaviour with evolving regulatory expectations.
This agent employs large language models (LLMs) integrated with Retrieval-Augmented Generation (RAG)
pipelines to parse new regulations, identify obligations, and map them to internal policies [117].
Capabilities include:
e Regulation-to-policy mapping: Uses natural language understanding to correlate regulatory clauses with
control processes.
e Gap analysis: Detects control deficiencies and proposes remediation steps.
e Continuous compliance assurance: Monitors regulatory updates in real time and recommends policy or
control adjustments proactively.
Through explainable Al mechanisms, it produces audit-ready summaries and compliance dashboards, reducing
manual compliance overhead and ensuring ongoing regulatory alignment.

3.7. Model Risk — Model Governance Agent
The Model Governance Agent ensures that Al and quantitative models within the BFSI ecosystem operate
under strict control and transparency.
[t continuously monitors model drift, bias, and explainability metrics across production systems.
Core functions:
e Drift detection: Flags performance degradation by comparing real-world outputs against training
baselines.
e Bias mitigation: Applies fairness diagnostics and causal inference techniques to ensure ethical and
regulatory compliance.
e Explainability: Generates interpretable summaries for regulators using SHAP or surrogate model
explanations [157].
By enforcing continuous validation and documentation, the Model Governance Agent reduces model risk
exposure while supporting compliance with standards like SR 11-7 and the EU Al Act.

3.8. Insurance Risk — Underwriting & Claims Agent
Within insurance operations, the Underwriting & Claims Agent optimizes both policy pricing and claims
management. [t integrates predictive modeling, behavioural analysis, and fraud detection to enhance profitability
and reduce losses.
Key functions:
e Predictive underwriting: Evaluates risk profiles dynamically using customer behaviour, claim history, and
external data.
e Claims fraud detection: Leverages anomaly detection and network analysis to identify fraudulent claims
patterns.
e Portfolio optimization: Continuously refines pricing models based on market conditions and policyholder
teedback.
Through continuous learning, this agent enables insurers to balance risk exposure with competitive pricing,
improving both profitability and fairness.

3.8.1. Collaborative Risk Intelligence
While each agent excels within its domain, the real strength of the Agentic Al framework lies in collaboration
and shared intelligence. Through the orchestrator layer, agents exchange signals and align decisions to maintain
enterprise-wide risk coherence. For example:
e  When the Market Risk Agent signals increased volatility, the Credit and Liquidity Agents proactively
adjust lending thresholds and reserve ratios.
e The Compliance Agent ensures all responses conform to regulatory frameworks, while the Governance
Layer provides auditability and explainability.
This multi-agent collaboration enables predictive, adaptive, and explainable risk management, replacing static
oversight with autonomous, orchestrated resilience across the BF'SI enterprise.

3.8.2. Reinforcement Learning for Continuous Risk Optimization
Reinforcement Learning (RL) introduces a paradigm shift in how financial institutions manage dynamic risk-
reward relationships. Unlike static supervised models, RL agents learn optimal policies by continuously interacting
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with their environment, observing states, taking actions, and receiving feedback through reward or penalty
mechanisms. In the BI'SI context, these agents function within a complex decision environment where actions such
as adjusting credit exposure, reallocating liquidity, or modifying portfolio hedges directly influence both
profitability and institutional stability.

The learning process is guided by reward functions explicitly tied to business and regulatory objectives.
Typical reward variables include loss probability reduction, regulatory compliance adherence, capital adequacy
ratio improvement, and liquidity buffer optimization. By quantifying these outcomes, RL enables agents to
autonomously optimize trade-offs between risk exposure and return efficiency under uncertainty [127].

For example, a Credit Risk Agent may receive positive rewards for lowering default rates while maintaining
acceptable yield, whereas a Liquidity Agent gains rewards for ensuring funding resilience without overcapitalizing
idle reserves. Similarly, a Compliance Agent is rewarded for reducing regulatory breach probabilities while
maintaining operational throughput.

The RL loop comprising state representation, policy selection, action execution, and reward evaluation
operates continuously, allowing agents to adapt to new data distributions, market shocks, and policy changes in
real time. Over successive episodes, the agent converges toward near-optimal decision policies that balance short-
term profitability with long-term resilience.

When extended into a Multi-Agent Reinforcement Learning (MARL) framework, collaboration among agents
becomes a critical factor. For instance, the Credit and Liquidity Agents may share environmental signals such as
capital availability or macroeconomic indicators to align their decision strategies. The orchestrator agent acts as a
central policy coordinator, ensuring that collective actions minimize systemic risk while maximizing enterprise
stability.

Through MARL, BFSI systems evolve into self-optimizing control networks, where agents cooperate rather
than compete for resource utilization. This results in enhanced enterprise-level equilibrium, reduced volatility, and
faster adaptation to both market and regulatory shifts. In essence, reinforcement learning transforms traditional
risk management from rule-based supervision into autonomous, feedback-driven optimization, enabling continuous
improvement in decision accuracy, compliance assurance, and financial performance.

3.8.8. Technical Use Cases and Live Scenarios
3.8.8.1. Adaptive Credit Risk Control

Reinforcement Learning (RL) agents continuously analyse borrower behaviours, credit utilization, and
macroeconomic indicators such as GDP growth, inflation, and interest rate trends. Based on this evolving data, the
agent dynamically adjusts credit limits, lending thresholds, and pricing to maintain optimal exposure levels.
Feedback from repayment performance and delinquency trends serves as reinforcement signals, enabling the model
to refine decision policies over time. This adaptive mechanism ensures proactive risk control while sustaining
profitability, reducing non-performing assets, and aligning with Basel credit risk frameworks.

3.8.8.2. Liquidity Simulation Engine

The Liquidity Simulation Engine leverages agent based modeling to forecast short term and intraday funding
positions. By ingesting transaction data, settlement flows, and market indicators, the agent performs multi scenario
stress simulations to predict liquidity gaps before they occur. Using RL optimization, it dynamically reallocates
capital and collateral to maintain reserve ratios and regulatory liquidity coverage. The system operates
autonomously during volatility spikes, ensuring continuous solvency and efficient balance sheet utilization. It
directly integrates with treasury systems and orchestrator agents for real-time capital coordination.

3.8.8.8. Autonomous AML Compliance

The compliance Agent employs a hybrid of Large Language Models (LLMs) and graph reasoning to detect
suspicious activity patterns that traditional rule-based AML systems miss. It merges KYC data, transaction graphs,
and sanction watchlists to uncover hidden relationships between entities. Reinforcement learning helps fine tune
alert thresholds by minimizing false positives while improving detection accuracy. When anomalies are found, the

agent generates transparent, audit-ready justifications for regulators. This continuous learning loop enables
proactive compliance aligned with FATF, FINRA, and EU AMLD standards.

3.8.8.4. Insurance Claims Fraud Detection

The Insurance Claims Agent integrates multimodal Al combining computer vision, NLP, and transactional
analysis to assess claim authenticity. It scans claim documents, repair invoices, and uploaded images to identify
inconsistencies or synthetic fraud patterns. Reinforcement learning feedback helps the agent refine detection logic
as confirmed fraud or legitimate cases are reviewed. This results in more precise claim triaging, reduced manual
review effort, and faster resolution cycles. The system integrates seamlessly with underwriting and policy
management agents, supporting dynamic risk-based pricing in real time.

3.8.3.5. Market Hedging Optimization

Market Risk Agents use multi-agent reinforcement learning to coordinate hedging strategies across trading
desks and asset classes. They continuously evaluate real-time portfolio sensitivity to price, rate, and currency
movements, running stress tests under alternative volatility regimes. Using live market feeds, the agent
recommends optimal hedge adjustments balancing transaction costs, counterparty exposure, and return-on-capital
constraints. Over time, policy updates improve hedge efficiency, ensuring consistent market neutrality. This results
in enhanced portfolio resilience and compliance with MiFID II and internal risk governance thresholds.
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3.9. Human-in-the-Loop Governance

While Agentic Al systems introduce autonomy and self-optimization, human oversight remains an
indispensable layer of governance to ensure ethical, regulatory, and strategic alignment. Human-in-the-loop
(HITL) mechanisms allow risk officers, compliance analysts, and model validators to supervise, approve, or
override agent actions before execution. These interfaces act as control checkpoints, especially for high-impact
decisions such as large credit disbursements, fraud alerts, or liquidity reallocations.

Expert feedback is continuously integrated into the learning process through reward shaping, ensuring that
reinforcement signals reflect institutional risk appetite, compliance thresholds, and board-level directives. This
teedback loop anchors agent behaviours within established frameworks such as Basel III, SR 11-7 (Supervisory
Guidance on Model Risk Management), FSB stability implications of Al, and emerging Al governance standards
like the EU AI Act and NIST AI Risk Management Framework [187[147].

Moreover, the governance layer provides traceability and explainability, recording every decision rationale and
model justification for audit readiness. By blending machine autonomy with human judgment, BFSI organizations
achieve controlled intelligence where agents operate adaptively yet remain fully accountable to regulatory and
ethical boundaries.

4. Conclusion and Future Outlook

Agentic Al systems are redefining how BISI institutions assess, manage, and mitigate risks across diverse
operational domains. By integrating autonomous agents within a Model Context Protocol (MCP) framework,
organizations enable seamless coordination between reasoning models, control systems, and domain specific risk
engines. The MCP layer ensures that agents share contextual understanding in real time, allowing risk
orchestration to occur dynamically and consistently across credit, financial crime compliance, operational and
market environments.

Within this architecture, Reinforcement Learning (RL), particularly using Proximal Policy Optimization
(PPO), serves as the optimization backbone for continuous policy refinement [167]. PPO stabilizes learning under
uncertainty and supports controlled adaptation of decision policies, ensuring that agents evolve within defined
regulatory and ethical limits. This combination of MCP driven context exchange and PPO-based learning creates a
self-optimizing ecosystem capable of maintaining enterprise wide risk equilibrium.

Looking ahead, the BFSI sector will move toward federated multi-agent networks that securely share risk
intelligence without compromising data privacy. Future innovation will focus on explainable RL governance,
causal inference integration, and cross-institutional orchestration, enabling transparent and collaborative
responsible risk intelligence. Through such convergence of context-aware orchestration and reinforcement
learning, Agentic Al will form the foundation of next-generation autonomous risk management infrastructure,
adaptive, auditable, and resilient by design.
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